Using Web Photos for Measuring Video Frame Interestingness

نویسندگان

  • Feng Liu
  • Yuzhen Niu
  • Michael Gleicher
چکیده

In this paper, we present a method that uses web photos for measuring frame interestingness of a travel video. Web photo collections, such as those on Flickr, tend to contain interesting images because their images are more carefully taken, composed, and selected. Because these photos have already been chosen as subjectively interesting, they serve as evidence that similar images are also interesting. Our idea is to leverage these web photos to measure the interestingness of video frames. Specifically, we measure the interestingness of each video frame according to its similarity to web photos. The similarity is defined based on the scene content and composition. We characterize the scene content using scale invariant local features, specifically SIFT keypoints. We characterize composition by feature distribution. Accordingly, we measure the similarity between a web photo and a video frame based on the co-occurrence of the SIFT features, and the similarity between their spatial distribution. Interestingness of a video frame is measured by considering how many photos it is similar to, and how similar it is to them. Our experiments on measuring frame interestingness of videos from YouTube using photos from Flickr show the initial success of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intentional Photos from an Unintentional Photographer: Detecting Snap Points in Egocentric Video with a Web Photo Prior

Wearable cameras capture a first-person view of the world, and offer a hands-free way to record daily experiences or special events. Yet, not every frame is worthy of being captured and stored. We propose to automatically predict “snap points” in unedited egocentric video—that is, those frames that look like they could have been intentionally taken photos. We develop a generative model for snap...

متن کامل

Detecting Snap Points in Egocentric Video with a Web Photo Prior

Wearable cameras capture a first-person view of the world, and offer a hands-free way to record daily experiences or special events. Yet, not every frame is worthy of being captured and stored. We propose to automatically predict “snap points” in unedited egocentric video— that is, those frames that look like they could have been intentionally taken photos. We develop a generative model for sna...

متن کامل

Finding Interesting Images in Albums using Attention

Commercial systems such as Flickr display interesting photos from their collection as an interaction mechanism for sampling the collection. It purely relies on social activity analysis for determining the notion of interestingness. We propose an alternative technique based on content analysis for finding interesting photos in a collection. We use a combination of visual attention models and an ...

متن کامل

RUC at MediaEval 2016: Predicting Media Interestingness Task

Measuring media interestingness has a wide range of applications such as video recommendation. This paper presents our approach in the MediaEval 2016 Predicting Media Interestingness Task. There are two subtasks: image interestingness prediction and video interestingness prediction. For both subtasks, we utilize hand-crafted features and CNN features as our visual features. For the video subtas...

متن کامل

Understanding and Predicting Interestingness of Videos

The amount of videos available on the Web is growing explosively. While some videos are very interesting and receive high rating from viewers, many of them are less interesting or even boring. This paper conducts a pilot study on the understanding of human perception of video interestingness, and demonstrates a simple computational method to identify more interesting videos. To this end we firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009